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Fig. 5. Transmission factor versus r/R for case p,=0, 260 =90°.

Graphs like those in Figs. 4 and 5 allow optimum
dimensions to be chosen for the target, from the
standpoint of the transmission factor in diffraction
studies. They also allow the value of the transmission
factor to be found for non-tabulated « and f§ values,
by an interpolation method.

Fig. 6 shows a plot of the transmission factor
versus scattering angle for «=0-4 and for various
values of the parameter . The smallness of its varia-
tion with the scattering angle makes it easy to find,
by interpolation, the values of the transmission
factor for other scattering angles.
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Fig. 6. Transmission factor versus scattering angle for case
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Ordering in Binary ¢ Phases

By F. J. SpooNER AND C. G. WILSON
Royal Military College of Science, Shrivenham, Swindon, Wiltshire, England

(Received 25 November 1963)

An X.ray diffraction study has been made of the ordering of atoms in the following binary o phases:
NbOs, NbIr, NbRe, MoOs, MoIr and CrRe. Ordering of atoms among the different atomic sites
has been shown to exist in all cases. From these results and others it is deduced that the size of
the constituent atoms is a major factor in governing the filling of 4, B, and D sites but in addition
some valency electron factor governs the filling of C and E sites.

Introduction

Considerable work has been done in recent years on
binary ¢ phases involving transition metals of all
three long periods. Comprehensive surveys on the
stability and composition of these phases have been
carried out by Knapton (1958) and Greenfield & Beck
(1956), but most of this work has been confined to

phases involving elements in the first and second long
periods. This report is concerned with an X-ray
diffraction investigation of the order involved in
additional ¢ phases consisting of elements of the
second and third long periods: NbOs, Nblr, NbRe,
MoOs, MolIr, WOs and in addition, a ¢ phase of
particular interest: CrRe.
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Experimental

The preliminary work was done with X.ray powder
photographs obtained with a 19 em Debye-Scherrer
camera and Ni-filtered Cu K« radiation, the theoretical
intensities being compared with those observed
visually. More accurate results were obtained with
an X-ray diffractometer and Cu Kx radiation ob-
tained from a stabilized X-ray set and monochro-
matized by a bent quartz crystal. A proportional
counter with single-channel pulse discrimination was
used for dztaction and relative line intensities were
obtained by measuring areas beneath the peaks on
the recorder traces.

The presence of order was detected by the com-
parison of observed (diffractometer) and calculated
line intensities. The detailed nature of the order was
obtained by the method of trial and error, the final
order scheme adopted being that which gave the best
agreement between observed and calculated inten-
sities. This method was very suitable because of the
appreciable difference in scattering factors between
the constituents of the o phases chosen for the in-
vestigation (except ¢-WOs). All calculated intensities
were corrected for anomalous dispersion by means of
the data given by Dauben & Templeton (1955).
The atomic parameters used for these calculations
are those determined by Bergman & Shoemaker
(1954) for o-FeCr. Since the results obtained are based
mainly on low-angle lines, small inaccuracies in atomic
parameters will have little effect on the results.
The 0-WOs powder film provided an excellent refer-
ence film for the detection of order in other ¢ phases
because of its similar cell size and the apparent

ORDERING IN BINARY ¢ PHASES

random order displayed by virtue of the similarity
of W and Os scattering factors. The agreement between
observed and calculated intensities based on random
order for this phase gives support for the wider use
of the Bergman & Shoemaker parameters.

During the course of the investigation unit-cell
sizes were determined from the Debye-Scherrer
photographs with the use of the Nelson-Riley extra-
polation method wherever possible; these measure-
ments, together with the relevant intensity data for
each sample, are given in Table 1. The order schemes
used for the calculated intensities given in this table
are included in the data given in Table 2. The nor-
malization scheme chosen for the comparison of
observed and calculated intensities was the summation
of all intensity values excluding those which were
associated with an impurity phase. A reliability index,
R=X(I,—1,)/21, was calculated for each ¢ phase,
for both ordered and random schemes, again ignoring
impurity lines, and is quoted in Table 1.

The final order schemes for CrRe and NbRe are
excellent, the slightly higher value of R for NbRe
being caused by the presence of the y phase previously
noted by Knapton. The ¢ phases NbOs, NblIr, MoOs,
and Molr have caused some difficulty owing to the
appearance of the 210 reflexion which is very sensitive
to order. It proved impossible to give this reflexion
a higher calculated intensity consistent with a low
value of E.

Some indication of the criterion for choosing a
particular order scheme can be seen by examining
the results in more detail, for example, the chosen
order scheme for ¢-MoIr having Ir atoms in 14, 6-5D
and 1E has a value for R of 0-117. The transfer of

Table 2. Ordering schemes for ¢ phases

o phase Composition Site 4
e\ — e e e — N
rz X Y ry A% X At%Y X Y
(1-36) V Ni (1-24) 69 31 03 1.7
(1-36) V Ni (1-24) 64 36 0-2 18
(1-36) V Ni (1-24) 61 39 03 17
(1-36) V Fe (1-27) 60 40 0-3 17
(1-28) Cr Mn  (1:31) 25 75 0 2
(1-28) Cr Co (1-26) 53 47 0 2
(1-28) Cr Fe (1-27) 40 60 0 2
(1-40) Mo Fe (1-27) 50 50 0 2
(1-40) Mo Mn (1-31) 37 63 0 2
(140) Mo Co  (1-26) 60 40 0 2
(1-40) Mo Re (1-37) 33 67 0 2
(1-40) Mo Re  (1:37) 45 55 0 2
(1-47) Nb  Os (1-34) 60 40 0 2
(1-47) Nb Ir (1-35) 60 40 0 2
(1-47) Nb Re (1:37) 45 55 0 2
(1140) Mo  Os (1-34) 65 35 05 15
(1140) Mo Ir (1-35) 72 28 1 1
(1-28) Cr Re (1-37) 40 60 1-5 05

(@) Kasper & Waterstrat (1956)

(b) Dickins, Douglas & Taylor (1956)
(¢) Bergman & Shoemalker (1954)

(d) Wilson & Spooner (1963)

Site B Site C Site D Site £ Valency
—_—  —— e~  —— electrons Refer-
X Y X Y X Y X Y peratom ence
39 01 75 05 11 69 79 01 64 (@)
4 0 65 15 07 73 79 01 6-8 (a)
4 0 56 24 10 70 75 05 7-1 (@)
4 0 65 15 1-2 68 6 2 6-2 (@)
1 3 3 5 0 8 35 45 675 (@)
4 0 8 0 0 8 4 4 74 (b)
4 0 0 8 0 8 8 0 7-2 (c)
3 1 6 2 0 8 6 2 7-0 (d)
4 0 3 5 0 8 4 4 6-63 (e)
4 0 7 1 0 8 7 1 7-2 (f)
2 2 4 4 0 8 4 4 6-67 (9)
3 1 4 4 1-5 65 5 3 6-55 (9)
4 0 8 0 0 8 6 2 6-2 (h)
4 0 7 1 0 8 7 1 6-6 (h)
4 0 475 3256 0 8 4-75 3:25 6-1 (h)
4 0 75 05 05 75 7 1 6-7 (h)
4 0 8 0 1-5 65 7 1 6-85 (h)
1 3 25 55 4 4 3 5 6-6 (h)

(e) Decker, Waterstrat & Kasper (1954)
(f) Forsyth & d’Alte da Veiga (1963)
(g) Wilson (1963)

(k) Present work
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one Ir atom from a D site to an A, B or C site results
in values of R of 0-144, 0-101 and 0-110, respectively,
and transfer of one atom from an ¥ site to an 4, B
or C site results in values of R of 0-175, 0-144 and
0-120, respectively. These results suggest that the
transfer of an Ir atom from a D site to a B site was
desirable, but although the intensity agreement
among the stronger reflexions is improved, the
agreement among the low-angle lines is extremely
poor. The adopted order schemes are those which
gave as low a value of R as possible consistent with
the requirement for good agreement with low angle
lines and missing reflexions. As Wilson (1963) has
pointed out for other ¢ phases, the presence of order
is indicated by the missing and weak line intensities.

The validity of the chosen order schemes is also
indicated to some extent by comparing the values
of R with that for WOs, which is 0-109. Since this
phase can be assumed to have random order because
of the similarity in scattering factors for the con-
stituent elements, there can be no improvement in
the value of R.

Discussion

Order schemes which have been determined ex-
perimentally for various ¢ phases are given in Table 2.
The elements constituting each ¢ phase are charac-
terised as X or Y, where X denotes an element to the
left of manganese in the periodic table and Y an
element to the right of manganese. Manganese and
rhenium, which belong to the same group in the
periodic table, are represented as Y-type elements.
The Goldschmidt radius for coordination number 12
is given (in A) in brackets at the side of each element.

It was pointed out by Kasper & Waterstrat in 1954,
that atoms of type Y generally occupy sites A and D
which have the smallest coordination number (12)
and smallest volume, atoms of type X generally
occupy the site B which has the largest coordination
number (15) and the largest volume, and sites C'and E,
which have the intermediate coordination number (14)
and intermediate volume may be occupied by a
mixture of X and Y atoms. This generalization applies
to the order schemes proposed for the o phases
NbRe, NbOs, NbIr, MoOs and MolIr but not for
0-CrRe. The generalization suggests the importance
of the chemical nature of the constituent atoms in
o-phase order, but because of the characteristic
variation of atomic size associated with the transition
elements of each long period, the importance of the
size effect in ordering becomes very apparent. The
total number of valency electrons in s and d shells
of the binary constituents (n.) is also important in
controlling order in some crystallographic sites as
indicated below. For the ¢ phases listed in Table 2
the nature of the ordering associated with each
crystallographic site may be summarized as follows:
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Site 4 (0, 0, 0) (CHN 12): Occupied mainly by Y atoms
except for o-Molr and ¢-CrRe; 7>y except for
0-CrRe and ¢-CrMn; independent of ..

Site B (z, x,0: x=0-3981) (CN 15): Occupied mainly
by X atoms except for ¢-CrMn, o-CrRe and
o-MoRe; rz <7y for ¢-CrMn and o-CrRe.

Site C (x,y,0: 2=0-4632, y=0-1316) (CN 14): Occu-
pied by X and Y atoms but X atoms predominate
except when Y=Mn or Re; domination by X
increases with z.; site equally divided when Y=
Mn or Re.

Site D (x,y,0: 2=0-7376, y=0-0653) (CN 12): Occu-
pied mainly by Y atoms; . >r, except for o-CrRe
and ¢-CrMn.

Site E (v, x,z: 1=0-1823, 2=0:2524) (CN 14): Occu-
pied by X and Y atoms; Y atoms predominate for
large ne.

The fact that A and D sites are usually filled by
Y atoms having smaller radii suggests the ordering
requirements of size and chemical nature. Similar
factors govern the filling of the large B sites. In
particular, when the larger atom is Y-type as happens
in ¢-CrMn and o¢-CrRe, the majority of B sites are
filled by Y atoms. The size factor is not apparent
in filling up the intermediate C and E sites, except
for large values of .. The phases containing Mn or
Re are always distinguished by the mixed nature of
the filling in C' and E sites. A more detailed comparison
of the exceptional phases CrMn, MoMn, MoRe and
CrRe in which X and Y come from groups VI and VII
of the periodic table shows that they have marked
similarity in their ordering schemes. This aspect is
much less apparent for ¢ phases whose atoms come
from different groups of the periodic table.

The effect of an increasing valency electron con-
tribution per atom can be estimated by considering
the following series of ¢ phases:

1. NbRe(6-1), VFe(6-2), NbOs(6-2), NblIr(6-6),
VNi(7-1).

2. MoRe(6-55), CrMn(6-75), MolIr(6-85),
MoFe(7-0), MoCo(7-2).

In series 1 the X atom has five valency clectrons
and in series 2 it has six valency electrons, the average
number of valency electrons per atom, of the unit
cell being given in brackets. As the number of valency
electrons per atom increases in each series the order
approaches the simplest form in which Y atoms fill
A and D sites only and X atoms {fill B, C' and E
sites only.

The above results suggest that complex systematics,
taking into account the size effect, the electronic
factor and the chemical factor, govern the ordering
in o phases. The stability of the phase and its com-
position range would also seem to depend upon
satisfying the ordering requirements since the only
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o phases reported as being randomly ordered are
g-CrOs, o-CrRe and ¢-CrRu (Waterstrat & Kasper,
1957). The latter authors suggested random
ordering for o-CrRe but the results given above
disprove this. So far the stability of the phase has
been variously attributed to electronic effects (Sully,
1951 ; Bloom & Grant, 1953 ; Greenfield & Beck, 1954)
and close-packing of spheres (Frank & Kasper, 1958;
Stiiwe, 1959). On the other hand, Haworth (1960)
concludes that the occurrence of the ¢ phase cannot
be predicted from normal intermediate phase con-
siderations.

If the ordering requirements are an essential feature
of this phase the random ordering reported in ¢-CrOs
and ¢-CrRu requires an explanation. Since rc;=1-28 A
and ros=1-34¢ A the Y atom Os is larger than the
X atom Cr, so that the normal requirements
(smaller atom and type Y) for filling 4 and D sites
cannot be satisfied and in this respect the phase is
similar to ¢-CrRe examined above. Following the
latter example, B sites would be filled by Y and X
atoms, and, since the number of valency electrons
per atom is only 6-6 for the composition used (OsCrz),
it is expected that C' and E sites would have mixed
occupants. Thus, the presence of order might be
difficult to detect and, in fact, Waterstrat & Kasper
state that their measurements were not accurate
enough to detect small amounts of ordering. Exactly
similar arguments apply to ¢-CrRu since Ru and Os
belong to the same group of the periodic table.

From such considerations the general requirements
for the stability of the ¢ phase formed by transition
elements appear to be (i) a favourable atom size ratio
(rzfry = 0-9-1-1 in Table 2), (ii) the number of
valency electrons per atom must lie within definite
limits (6-1—7-4 in Table 2), and (iii) the elements
X and Y must belong to the appropriate groups of
the periodic table as defined above. These require-
ments are not satisfied when one of the binary
elements is a non-transition element as in ¢-NbaAl
(Forsyth, 1961) and o-ZrRe (Tylkina, Povarova &

ORDERING IN BINARY o PHASES

Savitskii, 1960) and other factors are required to
explain the occurrence of the ¢ phase in these systems.

The authors wish to thank Dr A. G. Knapton for
providing the ¢-phase specimens, Mrs M. Parselle for
assistance with the diffractometer measurements and
Dr J. Adam for much valued advice. This work was
greatly assisted by the provisions of an extramural
contract with the UX.A.E.A. Harwell.
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